Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694025

RESUMO

Although lithium-ion batteries (LIBs) are extensively used as secondary storage energy devices, they also pose a significant fire and explosion hazard. Subsequently, thermal stability studies for LiPF6- and LiFSI-type electrolytes have been conducted extensively. However, the thermal characteristics of these electrolytes with thermally stable additives in a full cell assembly have yet to be explored. This study presents a comprehensive accelerating rate calorimetry (ARC) study. First, 1.2-Ah cells were prepared using a control commercial LiPF6 electrolyte and LiFSI with a specific succinonitrile additive and ethyl-methyl carbonate as a thermally stable electrolyte additive. The kinetic parameters involved in heat generation and their effects on the thermal properties of the ARC module were analyzed from the heat-wait-seek (HWS), self-heating (SH), and thermal runaway (TR) stages. The results indicate that the addition of a succinonitrile additive to the LiFSI electrolyte lowers the decomposition temperatures of the solid electrolyte interface (SEI) owing to polymerization with Li at the anode, while simultaneously increasing the activation energy of reaction temperatures at SEI between the separator and the electrolyte. The maximum thermal-runaway temperature decreased from 417 °C (ΔH = 5.26 kJ) (LiPF6) to 285 °C (ΔH = 2.068 kJ) (LiFSI + succinonitrile). This study provides key insights to the thermal characteristics of LiPF6 and LiFSI during the self-heating and thermal runaway stages and indicates a practical method for achieving thermally stable LIBs.

2.
J Phys Chem Lett ; 15(12): 3317-3322, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38520384

RESUMO

Acetonitrile (AN) electrolyte solutions display uniquely high ionic conductivities, of which the rationale remains a long-standing puzzle. This research delves into the solution species and ion conduction behavior of 0.1 and 3.0 M LiTFSI AN and propylene carbonate (PC) solutions via Raman and dielectric relaxation spectroscopies. Notably, LiTFSI-AN contains a higher fraction of free solvent uncoordinated to Li ions than LiTFSI-PC, resulting in a lower viscosity of LiTFSI-AN and facilitating a higher level of ion conduction. The abundant free solvent in LiTFSI-AN is attributed to the lower Li-solvation power of AN, but despite this lower Li-solvation power, LiTFSI-AN exhibits a level of salt dissociation comparable to that of LiTFSI-PC, which is found to be enabled by TFSI anions loosely bound to Li ions. This work challenges the conventional notion that high solvating power is a prerequisite for high-conductivity solvents, suggesting an avenue to explore optimal solvents for high-power energy storage devices.

3.
ACS Appl Mater Interfaces ; 16(8): 10033-10041, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373218

RESUMO

Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.

4.
Sci Rep ; 12(1): 16002, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163350

RESUMO

Three-dimensionally structured silicon (Si)-carbon (C) nanocomposites have great potential as anodes in lithium-ion batteries (LIBs). Here, we report a Nitrogen-doped graphene/carbon-encapsulated Si nanoparticle/carbon nanofiber composite (NG/C@Si/CNF) prepared by methods of surface modification, electrostatic self-assembly, cross-linking with heat treatment, and further carbonization as a potential high-performance anode for LIBs. The N-doped C matrix wrapped around Si nanoparticles improved the electrical conductivity of the composites and buffered the volume change of Si nanoparticles during lithiation/delithiation. Uniformly dispersed CNF in composites acted as conductive networks for the fast transport of ions and electrons. The entire tightly connected organic material of NG/C@Si and CNF prevented the crushing and shedding of particles and maintained the integrity of the electrode structure. The NG/C@Si/CNF composite exhibited better rate capability and cycling performance compared with the other electrode materials. After 100 cycles, the electrode maintained a high reversible specific capacity of 1371.4 mAh/g.

5.
Materials (Basel) ; 14(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443193

RESUMO

LiMn2O4 (LMO) spinel cathode materials suffer from severe degradation at elevated temperatures because of Mn dissolution. In this research, monobasic sodium phosphate (NaH2PO4, P2) is examined as an electrolyte additive to mitigate Mn dissolution; thus, the thermal stability of the LMO cathode material is improved. The P2 additive considerably improves the cyclability and storage performances of LMO/graphite and LMO/LMO symmetric cells at 60 °C. We explain that P2 suppresses the hydrofluoric acid content in the electrolyte and forms a protective cathode electrolyte interphase layer, which mitigates the Mn dissolution behavior of the LMO cathode material. Considering its beneficial role, the P2 additive is a useful additive for spinel LMO cathodes that suffer from severe Mn dissolution.

6.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443418

RESUMO

Silicon-carbon nanocomposite materials are widely adopted in the anode of lithium-ion batteries (LIB). However, the lithium ion (Li+) transportation is hampered due to the significant accumulation of silicon nanoparticles (Si) and the change in their volume, which leads to decreased battery performance. In an attempt to optimize the electrode structure, we report on a self-assembly synthesis of silicon nanoparticles@nitrogen-doped reduced graphene oxide/carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for LIB through electrostatic attraction. A large number of vacancies or defects on the graphite plane are generated by N atoms, thus providing transmission channels for Li+ and improving the conductivity of the electrode. CNF can maintain the stability of the electrode structure and prevent Si from falling off the electrode. The three-dimensional composite structure of Si, N-doped rGO, and CNF can effectively buffer the volume changes of Si, form a stable solid electrolyte interface (SEI), and shorten the transmission distance of Li+ and the electrons, while also providing high conductivity and mechanical stability to the electrode. The Si@N-doped rGO/CNF electrode outperforms the Si@N-doped rGO and Si/rGO/CNF electrodes in cycle performance and rate capability, with a reversible specific capacity reaching 1276.8 mAh/g after 100 cycles and a Coulomb efficiency of 99%.

7.
Sci Rep ; 11(1): 1283, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446702

RESUMO

We report the interfacial study of a silicon/carbon nanofiber/graphene composite as a potentially high-performance anode for rechargeable lithium-ion batteries (LIBs). Silicon nanoparticle (Si)/carbon nanofiber (CNF)/reduced graphene oxide (rGO) composite films were prepared by simple physical filtration and an environmentally-friendly thermal reduction treatment. The films were used as high-performance anode materials for self-supporting, binder-free LIBs. Reducing graphene oxide improves the electron conductivity and adjusts to the volume change during repeated charge/discharge processes. CNFs can help maintain the structural stability and prevent the peeling off of silicon nanoparticles from the electrodes. When the fabricated Si/CNF/rGO composites were used as anodes of LIBs, the initial specific capacity was measured to be 1894.54 mAh/g at a current density of 0.1 A/g. After 100 cycles, the reversible specific capacity was maintained at 964.68 mAh/g, and the coulombic efficiency could reach 93.8% at the same current density. The Si/CNF/rGO composite electrode exhibited a higher specific capacity and cycle stability than an Si/rGO composite electrode. The Si/CNF/rGO composite films can effectively accommodate and buffer changes in the volume of silicon nanoparticles, form a stable solid-electrolyte interface, improve the conductivity of the electrode, and provide a fast and efficient channel for electron and ion transport.

8.
J Phys Chem Lett ; 11(24): 10382-10387, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33237787

RESUMO

The marked difference in the ionic conductivities of linear carbonate (LC) electrolyte solutions despite their similar viscosities and permittivities is a long-standing puzzle. This study unraveled the critical impact of solvent conformational isomerism on salt dissociation in 0.1-3.0 M LiPF6 dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) solutions using Raman and dielectric relaxation spectroscopies. The extent of salt dissociation in the LC solutions, which decreased in the order DMC > EMC > DEC, is closely related to the fraction of polar cis-trans LC conformers, as this conformer participates in Li ion solvation more readily than the nonpolar cis-cis counterpart. Our first-principles calculations corroborated that the cis-trans conformer facilitates free ion formation more than the cis-cis conformer, and the extent of this effect decreased in the order DMC > EMC > DEC. This study provides an avenue for the design of highly conductive electrolytes by exploiting the conformational isomerism of solvent molecules.

9.
ACS Appl Mater Interfaces ; 11(1): 517-524, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525367

RESUMO

Most electrolytes for rechargeable Mg batteries require time-consuming conditioning or precycling process to achieve a fully reversible Mg deposition/dissolution, which hinders the normal operation of Mg batteries. This study details a simple and effective method for eliminating this conditioning behavior using heptamethyldisilazane (HpMS) as an electrolyte additive. It was found that the HpMS additive greatly increases the current density and Coulombic efficiency of Mg deposition/dissolution from the initial cycles in various sulfone and glyme solutions containing MgCl2 or Mg(TFSI)2. The beneficial effect of HpMS was ascribed to its ability to scavenge trace water in the electrolytes and remove Mg(OH)2 and Mg(TFSI)2-decomposition products from the Mg surface. Considering its applicability for a wide range of Mg electrolytes, the use of HpMS is expected to accelerate the development of practical Mg batteries.

10.
Phys Chem Chem Phys ; 20(36): 23433-23440, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30182120

RESUMO

Thermoelectrochemical cells (TECs) provide conspicuous advantages, including a high Seebeck coefficient (Se), design flexibility, and low cost compared with conventional thermoelectric devices. Here, we investigated TECs employing Li metal electrodes (Li-TECs) and a series of glyme (CH3O[CH2CH2O]nCH3, n = 1-4, nG) solvents with 0.5-3.0 M lithium-imide salts (lithium bis [fluorosulfonyl]imide, LiFSI, and lithium bis[trifluoromethane sulfonyl]imide, LiTFSI). The Se value and power performance of Li-TECs markedly depend on the nature of glyme solvents and Li salt concentration. The dependency of Se on the solvation structure of the Li-ions is examined via Raman measurements, and the internal resistance of Li-TECs is analyzed using electrochemical impedance spectroscopy. Notably, a Li-TEC with 1.0 M LiFSI 1G displays about two times higher power density and about eight times higher conversion efficiency than a conventional Cu-TEC utilizing aqueous electrolytes, which is ascribed to the high Se value and low thermal conductivity of the former. In addition, for a Li-TEC with 1.0 M LiFSI 1G, the low-temperature performance is examined to assess its practical feasibility.

11.
J Nanosci Nanotechnol ; 18(7): 5026-5032, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442689

RESUMO

Silicon (Si) is one of the most attractive anode materials for lithium secondary batteries because of its large theoretical capacity, high safety, low cost and environmental benignity. However, Si-based anode material needs to overcome the structural change of the solid-electrolyte interphase due to the large volume change during cycling. To resolve these problems of composites by exploiting the superior conductivity, large specific surface area and flexibility of graphene, we have synthesized reduced graphene oxide (rGO)/Si composite electrode via a simple dip-coating method. Nickel foam is used as a current collector and template for the electrode fabrication. At 0.03 wt%, Si concentration, the rGO/Si composite anode presented the excellent cycle performance with large reversible capacity (778 mAh g-1 after 100 cycles). The characteristics of the rGO/Si composites were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Raman and X-ray photoelectron spectroscopy (XPS). The improved anode performance of the rGO/Si composite anode is ascribed to the rGO serving as a buffer layer, thereby preventing the volume expansion of Si nanoparticles, and provide facile electron pathways.

12.
Inorg Chem ; 56(14): 7668-7678, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28648064

RESUMO

Magnesium batteries have received attention as a type of post-lithium-ion battery because of their potential advantages in cost and capacity. Among the host candidates for magnesium batteries, orthorhombic α-V2O5 is one of the most studied materials, and it shows a reversible magnesium intercalation with a high capacity especially in a wet organic electrolyte. Studies by several groups during the last two decades have demonstrated that water plays some important roles in getting higher capacity. Very recently, proton intercalation was evidenced mainly using nuclear resonance spectroscopy. Nonetheless, the chemical species inserted into the host structure during the reduction reaction are still unclear (i.e., Mg(H2O)n2+, Mg(solvent, H2O)n2+, H+, H3O+, H2O, or any combination of these). To characterize the intercalated phase, the crystal structure of the magnesium-inserted phase of α-V2O5, electrochemically reduced in 0.5 M Mg(ClO4)2 + 2.0 M H2O in acetonitrile, was solved for the first time by the ab initio method using powder synchrotron X-ray diffraction data. The structure was tripled along the b-axis from that of the pristine V2O5 structure. No appreciable densities of elements were observed other than vanadium and oxygen atoms in the electron density maps, suggesting that the inserted species have very low occupancies in the three large cavity sites of the structure. Examination of the interatomic distances around the cavity sites suggested that H2O, H3O+, or solvated magnesium ions are too big for the cavities, leading us to confirm that the intercalated species are single Mg2+ ions or protons. The general formula of magnesium-inserted V2O5 is Mg0.17HxV2O5, (0.66 ≤ x ≤ 1.16). Finally, density functional theory calculations were carried out to locate the most plausible atomic sites of the magnesium and protons, enabling us to complete the structure modeling. This work provides an explicit answer to the question about Mg intercalation into α-V2O5.

13.
Phys Chem Chem Phys ; 18(34): 23607-12, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27506245

RESUMO

Complex formation between lithium (Li(+)) ions and electrolyte molecules would affect the ionic conductivity through the electrolyte in lithium-ion batteries (LIBs). We hence revisit the solvation number of Li(+) in the most commonly used ethylene carbonate (EC) electrolyte. The solvation number n of Li(+)(EC)n in the first solvation shell of Li(+) is estimated on the basis of the free energy calculated by the density functional theory combined with a hybrid solvation model where the explicit solvation shell of Li(+) is immersed in a free volume of an implicit bulk solvent. This new hybrid solvation (implicit and explicit) model predicts the most probable solvation number (n = 4) and solvation free energy (-91.3 kcal mol(-1)) of Li(+) in a good agreement with those predicted by calculations employing simpler solvation models (either implicit or explicit). The desolvation (n = 2) of Li(0)(EC)n upon reduction near anodes is also well described with this new hybrid model.

14.
ACS Appl Mater Interfaces ; 8(22): 13973-81, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27183170

RESUMO

Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.

15.
ACS Med Chem Lett ; 6(11): 1162-6, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26617972

RESUMO

A propylene cross-bridged macrocyclic chelator with two phosphonate pendant arms (PCB-TE2P) was synthesized from cyclam. Various properties of the synthesized chelator, including Cu-complexation, Cu-complex stability, (64)Cu-radiolabeling, and in vivo behavior, were studied and compared with those of a previously reported propylene cross-bridged chelator (PCB-TE2A).

16.
Inorg Chem ; 54(17): 8177-86, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26286436

RESUMO

Bifunctional chelators have been successfully used to construct (64)Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with (64)Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the (64)Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of (64)Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for (64)Cu-based radiopharmaceuticals, especially those involving peptides.


Assuntos
Quelantes/química , Radioisótopos de Cobre/química , Compostos Organometálicos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Quelantes/síntese química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Estrutura Molecular , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
17.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 6): m135-6, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26090169

RESUMO

In the structure of the title salt, [Co(C6H6N2)2(H2O)2](BF4)2, the Co(II) atom is located on an inversion centre. The transition metal is in a slightly distorted octa-hedral coordination environment, defined by the cyano N atoms of four hex-3-enedi-nitrile ligands in equatorial positions and the O atoms of two water mol-ecules in axial positions. The bridging mode of the hex-3-enedi-nitrile ligands leads to the formation of cationic chains extending parallel to [1-10]. The BF4 (-) counter-anion is disordered over two sets of sites [occupancy ratio = 0.512 (19):0.489 (19)]. It is located in the voids between the cationic chains and is connected to the aqua ligands of the latter through O-H⋯F hydrogen bonds. One methyl-ene H atom of the hex-3-enedi-nitrile ligand forms another and weak C-H⋯O hydrogen bond with a water O atom of a neighbouring chain, thus consolidating the three-dimensional network structure.

18.
J Med Chem ; 57(17): 7234-43, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25137619

RESUMO

The first macrocyclic bifunctional chelator incorporating propylene cross-bridge was efficiently synthesized from cyclam in seven steps. After the introduction of an extra functional group for facile conjugation onto the propylene cross-bridge, the two carboxylic acid pendants could contribute to strong coordination of Cu(II) ions, leading to a robust Cu complex. The cyclic RGD peptide conjugate of PCB-TE2A-NCS was prepared and successfully radiolabeled with (64)Cu ion. The radiolabeled peptide conjugate was evaluated in vivo through a biodistribution study and animal PET imaging to demonstrate high tumor uptake with low background.


Assuntos
Alcenos/química , Quelantes/química , Cobre/química , Desenho de Fármacos , Compostos Macrocíclicos/química , Animais , Quelantes/síntese química , Quelantes/farmacocinética , Complexos de Coordenação/química , Radioisótopos de Cobre/química , Radioisótopos de Cobre/farmacocinética , Glioblastoma/metabolismo , Glioblastoma/patologia , Compostos Heterocíclicos/química , Humanos , Compostos Macrocíclicos/síntese química , Camundongos , Camundongos Nus , Modelos Químicos , Estrutura Molecular , Oligopeptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Ratos , Distribuição Tecidual , Transplante Heterólogo
19.
ACS Appl Mater Interfaces ; 6(11): 8913-20, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24836760

RESUMO

Non-flammability of electrolyte and tolerance of cells against thermal abuse should be guaranteed for widespread applications of lithium-ion batteries (LIBs). As a strategy to improve thermal stability of LIBs, here, we report on nitrile-based molecular coverage on surface of cathode active materials to block or suppress thermally accelerated side reactions between electrode and electrolyte. Two different series of aliphatic nitriles were introduced as an additive into a carbonate-based electrolyte: di-nitriles (CN-[CH2]n-CN with n = 2, 5, and 10) and mono-nitriles (CH3-[CH2]m-CN with m = 2, 5, and 10). On the basis of the strong interaction between the electronegativity of nitrile functional groups and the electropositivity of cobalt in LiCoO2 cathode, aliphatic mono- and di-nitrile molecules improved the thermal stability of lithium ion cells by efficiently protecting the surface of LiCoO2. Three factors, the surface coverage θ, the steric hindrance of aliphatic moiety within nitrile molecule, and the chain polarity, mainly affect thermal tolerance as well as cell performances at elevated temperature.

20.
ACS Appl Mater Interfaces ; 6(3): 2039-43, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24444831

RESUMO

Succinonitrile (SN) is investigated as an electrolyte additive for copper corrosion inhibition to provide overdischarge (OD) protection to lithium ion batteries (LIBs). The anodic Cu corrosion, occurring above 3.5 V (vs Li/Li(+)) in conventional LIB electrolytes, is suppressed until a voltage of 4.5 V is reached in the presence of SN. The corrosion inhibition by SN is ascribed to the formation of an SN-induced passive layer, which spontaneously develops on the copper surface during the first anodic scan. The passive layer is composed mainly of Cu(SN)2PF6 units, which is evidenced by Raman spectroscopy and electrochemical quartz crystal microbalance measurements. The effects of the SN additive on OD protection are confirmed by using 750 mAh pouch-type full cells of LiCoO2 and graphite with lithium metal as a reference electrode. Addition of SN completely prevents corrosion of the copper current collector in the full cell configuration, thereby tuning the LIB chemistry to be inherently immune to the OD abuses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...